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1. Introduction 
The objective of this lecture is to describe how vascular properties and function can 
be measured by using MR contrast agents. This will include: 

• The properties of tumours that lend themselves to assessment using contrast. 
• The transport and delivery of contrast agents. 
• Contrast agent properties.  
• Imaging methods to assess signal change due to contrast agent delivery.  
• The trade-offs inherent in measuring contrast agent uptake by MRI.  
• What properties of tumours are measured.  
• Examples of applications in cancer. 

The use of modelling to extract physiological imaging is the subject of the following 
lecture, and the experimental use of these and similar techniques are also covered in a 
separate lecture.  
 
 
2. Vascular properties of tumours 
Tumour development is the result of a complex process of mutations, changes in 
cellular regulation and selection processes. One or more mutations in DNA (either 
inherited or somatic) can lead to failure of normal growth control mechanisms, and 
the ability of an aberrant cell to continually grow. Up to a certain point, this can 
proceed on the basis of oxygen and nutrient diffusion. Folkman(1) proposed that 
above a size of around 1mm, a vascular supply was required to provide continued 
nutrient support, and that tumours that grew above this size had evolved the capacity 
to develop their own blood supply. It is now clear that growth factor support of 
vascular development is an important characteristic of most larger tumours, and that 
neo-angiogenesis, the enhancement of local blood supply to feed a tumour, is largely 
controlled by stress derived processes(2). Tumour cells, driven by local hypoxia as 
they have outgrown their blood supply, up-regulate proteins such as HIF-1α leading to 
the production of vascular endothelial growth factor, creating a gradient of 
concentration in tissues surrounding tumour. This has the effect of causing the 
vascular endothelium of nearby blood vessels to bud new capillaries that are leaky 
and which are VEGF dependent, without smooth muscle, which progressively grow 
towards the tumour. This results in the establishment of a characteristic rich but 
disorganised vascular network, that can have high blood volume and has large 
endothelial junctions. Recent work is showing that similar effects occur in the 
lymphatic system(3). When the stress factors are reduced, due to the additional 
vasculature, VEGF generation can cease, resulting in apoptosis of this neo-
vasculature, a reduction in or trimming of vascular support, with tissue necrosis and a 
subsequent further cycle of neo-angiogenesis. This continual remodelling increases 
the chaotic environment of the tumour, as well as maintaining evolutionary pressure 
on the cancer cells. These processes also favour the breakdown of parts of the matrix 
supporting tumour cells, the development of increased motility, and the ingress of 
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tumour cells into the vascular and lymphatic systems. Often the tumour is 
characterised by high interstitial pressure due to an imbalance between vascular 
leakiness, and lymphatic drainage, which can also affect vascular delivery. Thus 
important factors include areas of high perfusion, leaky vasculature, areas of low 
perfusion, chaotic and disordered vasculature, high blood volume in some areas, high 
interstitial pressure. 
 
3. Transport and delivery of contrast agents 
Currently most low molecular weight contrast agents are administered by intravenous 
bolus in clinical studies, and animal studies often use tail vein injection. Where high 
time resolution methods are used (1-10s acquisition periods) a power injector is 
preferred to ensure a well defined and reproducible bolus, aiding assessment of first 
pass and initial uptake. Some modelling methods obtain most information from the 
washout phase and in this case a slower IV infusion may be used. Higher molecular 
weight agents may also require a slower IV infusion. The use of a primed line, and 
following the bolus with a saline flush is important with bolus injections, to ensure 
full delivery of the contrast agent into the vascular system. Following injection, the 
contrast agent will make a first pass of the heart and lungs, resulting in mixing, 
dilution and lengthening of the bolus. Subsequently, it will pass through the heart 
again, and be distributed by the arterial system. The arrival function in a tissue 
network will depend on the cardiac output and on the flow dynamics en route, which 
may be expected to lengthen the bolus in proportion to distance and gauge of vessels. 
In a tumour the chaotic nature of the vasculature may be expected to further lengthen 
this function, which may show a regional variation, and will also be affected by local 
interstitial pressure. First pass studies provide information on delivery to the tumour. 
Leakage out of the vessels will dependent on the characteristics of the vascular 
endothelium (permeability, area), the properties of the contrast agent, and the driving 
gradient (blood concentration, extracellular space). These properties may change 
within the 10-100 μm range. These processes will affect the initial portion of the 
contrast agent uptake curve. Further uptake is then defined by the continuing relative 
blood to interstitial space concentration gradient. Once this reverses, washout can 
occur, but this will usually be at a much slower rate, as the concentration gradient will 
generally be small. Blood concentration is governed by cardiac output, uptake in other 
tissues and excretion (eg renal). Some of these characteristics can be affected by 
disease or treatment. 
 
4. Contrast agent properties 
Small molecular weight contrast agents, containing chelated gadolinium, have been 
most widely used. There are small differences between different chelates  that may 
affect uptake in specific tissues, or excretion(4). Gd-DTPA is the best characterised 
contrast agent, and the agent for which plasma clearance curve data are incorporated 
in the most widely used Tofts-Kermode model. Modelling using other contrast agents 
would need to ensure that appropriate data are used. Likewise care should be 
exercised in combining data from measurements using different agents, although they 
may have similar characteristics. Small molecular weight compounds leak very 
quickly in tumours and more slowly in many normal tissues. They do not leak through 
the blood brain barrier unless it is disrupted.  
Higher molecular weight agents may use gadolinium or superparamagnetic particles. 
Larger compounds may include a large number of gadolinium molecules. Examples 
include albumin bound gadolinium, USPIOs, contrast agents with multiple 
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gadolinium binding sites, and higher molecular weight agents with limited binding 
sites(5). These may act blood pool agents, with reduced leakage even in tumour; or 
provide agents that leak more slowly. In all cases they have much increased 
relaxivity, leading to a higher sensitivity of detection.  They may be used to improve 
the accuracy and sensitivity of first pass studies, provided they can be delivered as a 
bolus, to assess blood volume, and to depict the architecture of tumour vasculature 
with improved spatial resolution. They can be used to more accurately measure 
tumour permeability, blood flow and extracellular volume with higher spatial 
resolution and without a requirement for very fast sequences. These applications are 
predominantly limited to pre-clinical studies, as most high molecular weight agents 
are not licensed for clinical applications as yet.  
 
4. Imaging methods to assess signal change due to contrast agent delivery. 
T1 weighted measurement methods are used to assess contrast uptake in tissues. 
Quantitative techniques are generally recommended(6;7), to aid intercomparison and 
transportability between centres. This should include an assessment of native tissue 
T1 relaxation time, so that measurement of signal changes is not biased by native T1. 
By measuring T1 relaxation times, contrast agent concentration can be derived, with a 
known relaxivity. Measurement methods include multi-point T1 weighted 
measurements, proton density and T1 weighted measurements(8-13). While these 
approaches generally correct for receive coil sensitivity, they can be affected by 
transmit coil response affecting flip angle, and methods that minimise for such 
sensitivity are advisable. 2D acquisitions allow more rapid measurements, but are 
generally limited to a few slices, and are affected by slice profile effects. Cross talk 
between slices can reduce sensitivity if line interleaved acquisitions are used(14). 
Calculation of contrast agent concentration and the accuracy of compartmental 
models can also be affected by water exchange(15). Measurement of arterial input 
function in a major vessel is difficult due to inflow and flow sensitivity effects. 3D 
acquisitions have limited temporal resolution, but are more robust with respect to slice 
profile and arterial input measurements. In all cases it is important to ensure that the 
sequence flip angle and repetition time are appropriate to the dynamic range of 
contrast agent concentration to be assessed. Care should be taken to minimise 
sensitivity to T2* effects. Measurements of larger molecular weight compounds may 
need to be tuned to the higher relaxivity of these agents, but the reduced requirements 
for time resolution may aid spatial resolution and volume coverage. Techniques 
developed for contrast-enhanced angiography may aid depiction of tumour 
vasculature.  
Blood volume and perfusion measurements usually exploit T2* contrast mechanisms, 
relying on the loss of signal resulting from a high concentration of contrast. This 
usually requires high time resolution to capture the first pass(16). With blood pool 
agents, the effect will be retained in the longer term, allowing higher spatial resolution 
approaches, provided there is no local leakage of the agent, which would destroy the 
local susceptibility gradient. Dual echo techniques can allow both T1 weighted and 
T2* weighted contrast changes to be assessed simultaneously(11). 
 
5. The trade-offs inherent in measuring contrast agent uptake by MRI. 
Determining the optimum approach for a contrast enhanced study depends on many 
interdependent parameters concerned with equipment, volume coverage, information 
required, practicality in a clinical or experimental context and technology available. 
The balance between these parameters can depend on the anatomical location of 
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interest, and on the technology available. The major aspects governing the quality of 
the information obtained are the contrast to noise of the measurement (dependent on 
relaxivity, spatial and temporal resolution, contrast sensitivity and dynamic range, coil 
configuration), temporal resolution (flip angle, TR, TE, defines ability to assess initial 
uptake or first pass, volume coverage, spatial resolution, 2D/3D), spatial resolution 
(temporal resolution, volume coverage, slice thickness, contrast to noise), accuracy of 
quantification, flow sensitivity, motion sensitivity. Given that changes over time are 
being assessed, motion is a particular problem in the thorax and abdomen. Motion can 
often be reduced by using breath-hold acquisition, gating, triggering or navigator 
motion. However other involuntary motion such as GI tract motion, can present a 
more difficult problem.   
 
6. What properties of tumours are measured. 
MRI is becoming increasingly capable of depicting tumour vasculature, based on 
angiographic techniques. Resolution is limited by the spatial resolution of the imaging 
sequence (taking account also of slice thickness). Often this places a limit of 0.5-
1mm, unless small field of view imaging is performed. In principle, if sufficient 
contrast in the vascular signal is available, the presence of structures below this 
resolution may be apparent, as is also the case for structures below the slice thickness. 
However these structures cannot be accurately spatially defined. Sensitivity is also 
limited in highly permeable tumours, as with small molecular weight contrast agents 
the enhancement of surrounding tumour will reduce the contrast with vessels. Blood 
pool agents, with limited leakage from tumour vasculature, can aid discrimination of 
vessels within tumours. These approaches with blood pool agents would allow 
assessment of blood volume(17). Those agents with detectable leakage can be used to 
assess tumour vascular permeability(18). T2* first pass techniques can allow 
estimation of relative blood volume, relative blood flow and mean transit time. In 
principle, quantitative measurements can be made, with knowledge of the arterial 
input function and normalisation factors that take account of factors such as relaxivity 
and local tissue haematocrit(19). T1 weighted measurements allow assessment of 
contrast agent delivery and leakage into the extra-cellular space. This can be used to 
identify areas of contrast extravasation, a common approach in tumour detection and 
diagnosis. Increasingly the signal enhancement characteristics are assessed, providing 
some information on the lesion characteristics. This information may be obtained in 
terms of the shape of the contrast curve, or metrics describing this such as rate of 
enhancement, time to maximum, amplitude of maximum. These measures are often 
sequence and equipment dependent, and can be difficult to translate between 
machines, but have been used for characterising abnormal tissues, and for assessing 
grade and response. Quantitative assessments of contrast uptake and washout 
behaviour calculate contrast agent concentration, based either on assumptions of 
linearity of signal change with contrast concentration, or on the use of calibrated 
measurement methods and a value for the relaxivity of the agent. These calculated 
values can be used directly (eg maximum value), integrated over a period (initial area 
under the gadolinium contrast curve - IAUGC) which is a robust non-model 
dependent descriptor, or fitted to a pharmacological model to derive physiological 
parameters. These approaches are also used for diagnosis, grading and assessment of 
response. They provide parameters such as Ktrans – rate of transfer out of the 
vasculature, ve – extra-cellular voulume, kep – transfer back to the vasculature 
(6;7;20). These are described in detail in a following lecture.  
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7. Examples of applications in cancer. 
There are a very wide range of applications of these methods in cancer, both for 
experimental and for clinical studies. Detection of cancer, either in screening, targeted 
screening, or in identification of source of symptoms, increasingly is using contrast 
enhanced MR imaging. A particular example is the detection of early stage breast 
cancer, as a targeted screening application in high-risk women. Recent reports have 
shown MR to have a high sensitivity compared with conventional X-ray 
mammography in women at high risk of breast cancer (21-23). MR can also help 
discriminate benign from malignant disease on the basis of morphology and of 
contrast agent dynamics.  Contrast enhanced imaging is used to help define the 
characteristics of disease in a range of conditions. In brain tumours, contrast enhanced 
imaging helps discriminate tumour type, and in astrocytoma helps distinguish low-
grade disease from high-grade disease. A number of studies have shown that contrast 
agent uptake characteristics can predict response to therapy, presumably in part due to 
drug access, or relative hypoxia(24). Dynamic behaviour of contrast agent has been 
evaluated in many studies to assess response of tumour to a range of treatments. In 
prostate cancer for example, vasculature is under androgen control, and androgen 
blockade leads to much reduced contrast enhancement(25). Conventional 
chemotherapy can affect tumour vascular support, for example in breast cancer, 
changing contrast uptake and providing a measure of drug action. Changes in contrast 
observed with these treatments may reflect impact on vasculature, or on cell numbers 
due to the cytotoxic action of the drugs, and thus on the metabolic demand of the 
tumour. These changes may also affect tumour interstitial pressure, which can also 
affect access of contrast agent. Tumour vasculature, neo-angiogenesis and the 
processes supporting these structures and properties of tumours are major targets for 
novel cancer therapeutics. Dynamic contrast enhanced MR is now being used both in 
experimental research into these agents, the processes that control tumour vascularity, 
and in early clinical trials of new agents(26-34). Often quantitative measurement 
techniques are used, with contrast uptake parameters calculated for single volumes of 
interest, or on a pixel by pixel basis. 
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